
UMM Versioning Design
Goal

Provide a way to update the UMM schemas without breaking clients.

 Traceability

Rationale

The UMM schema will evolve over time. We need the ability to ingest and store JSON metadata according to one version of the schema, and then
later load it according to the latest version. This problem is similar to database migration, except that we are migrating metadata on demand,
instead of updating a database schema in-place with one-off operations. We must maintain previous versions of the UMM schema and make it
available to consumers (like MMT) so that they can adequately respond to changes. This approach will allow CMR to evolve faster and give
clients room to adapt to changes on their own terms.

Mitigating the Impact of Breaking Changes

Currently, changing portions of the UMM schema can lead to problems for CMR users (e.g. MMT). For example: changing an existing property
from a simple object to an array property under a new name (e.g. to TilingIdentificationSystem , plural) would breakTilingIdentificationSystem s
client apps that were developed against the schema prior to the change.

To work around this issue, a user like MMT would always explicitly specify the version of UMM data that they are requesting or uploading via the
 or headers. This allows a client to continue dealing with the data they are used to, even if the UMM schema has beenAccept Content-Type

updated to a newer version.

Approach

JSON Schema Files

We will store JSON schema files in a directory named after the UMM version they represent. For example:

/resources/json-schemas/umm/1.1/common.json
/resources/json-schemas/umm/1.1/collection.json
/resources/json-schemas/umm/1.2/common.json
/resources/json-schemas/umm/1.2/collection.json

Individual JSON schemas will use relative references to refer to other schemas of a specific version.

"$ref": "../1.1/common.json#/definitions/ShortNameType"

A new route will serve an HTML page listing the JSON schema files for clients like MMT developers.

API Changes

For HTTP API clients interacting with the CMR, we will augment the UMM JSON media type with version numbers to explicitly specify the UMM
version that is being sent or received. We will use media type parameters to explicitly specify a version, and assume the latest version if no
version parameter is provided.

To conform to media type best practices, we will update the UMM media type to use the "vendor" tree, with a "vnd.nasa" prefix in the subtype to
denote that UMM is a NASA media type.

Media Type Type Subtype Suffix Version Parameter

application/vnd.nasa.cmr.umm.collection+json; version=1.2 application vnd.nasa.cmr.umm.collection json 1.2

Specifying or omitting the version parameter in a request has different implications in different contexts. The following examples assume the
current version of the UMM schema is 1.2:

API Action Request Accept Header Request Content-Type Header Response Content-Type Header Result

 - JIRA project doesn't exist or you don't have permission to view it.CMR-2354

https://bugs.earthdata.nasa.gov/browse/CMR-2354?src=confmacro

Ingesting JSON
metadata

n/a application/vnd.nasa.cmr.umm+json;
version=1.2

application/vnd.nasa.cmr.umm+json;
version=1.2

The metadata is
parsed and
validated according
to the specified
version before1.2
being converted to
in-memory UMM
records for ingest
and indexing; the
specified version is
stored in Metadata
DB and the JSON
metadata is returned
exactly as it was
ingested.

Ingesting JSON
metadata

n/a application/vnd.nasa.cmr.umm+json application/vnd.nasa.cmr.umm+json;
version=1.2

The latest version of
UMM is assumed,
and metadata is
parsed and ingested
accordingly. Questi

should weon:
support this? Is
MMT the only client
using the API to
ingest UMM JSON?

Requesting a
concept ingested
as UMM JSON

application/vnd.nasa.cmr.umm+json n/a application/vnd.nasa.cmr.umm+json;
version=1.2

The concept
metadata is returned
as-is, and the
Content-Type
header contains a
media type with a
version parameter
corresponding to the
version used when
the concept was
initially ingested.

Requesting a
concept ingested
as UMM JSON

application/vnd.nasa.cmr.umm+json;
version=1.2

n/a application/vnd.nasa.cmr.umm+json;
version=1.2

The concept's JSON
metadata is parsed
and converted to the
desired version
using the above
mentioned migration
code before being
encoded as JSON,
and returned with a
Content-Type
header containing a
version parameter
indicating the
requested version.

Requesting a
concept initially
ingested as XML
as UMM JSON

application/vnd.nasa.cmr.umm+json n/a application/vnd.nasa.cmr.umm+json;
version=1.2

The latest version of
UMM is assumed
and the XML
metadata is parsed
as UMM records
and encoded as
JSON (as currently
implemented)

Requesting a
concept initially
ingested as XML
as UMM JSON

application/vnd.nasa.cmr.umm+json;
version=1.1

n/a application/vnd.nasa.cmr.umm+json;
version=1.1

The XML metadata
is parsed into UMM
records according to
the latest schema
and migrated to the
requested UMM
version before being
encoded as JSON.

Error rendering macro 'pageapproval' : null

	UMM Versioning Design

